Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sci Rep ; 13(1): 2534, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: covidwho-2245374

RESUMEN

Andrographis paniculata, a medicinal plant in Thailand national list of essential medicines, has been proposed for treatment of patients with mild to moderate coronavirus disease 2019. This study aims to develop a highly selective and sensitive liquid chromatography triple quadrupole tandem mass spectrometry method for quantitative determination of major diterpenoids in plasma and urine with application in pharmacokinetics. Chromatographic separation was performed on C18 column using a gradient mobile phase of water and acetonitrile. Mass spectrometry was analyzed using multiple reaction monitoring with negative ionization mode. This validated analytical method was very sensitive, less time consuming in analysis, and allowed the reliability and reproducibility on its application. The clinical pharmacokinetics was evaluated after single oral administration of A. paniculata extract (calculated as 60 mg of andrographolide). The disposition kinetics demonstrated that major diterpenoids could enter into systemic circulation, but they are mostly biotransformed (phase II) into conjugated glucuronide and sulfate metabolites. These metabolites are predominantly found in plasma and then extremely eliminated, in part through urinary excretion. The successful application of this analytical method supports its suitable uses in further clinical benefits after oral administration of A. paniculata.


Asunto(s)
Andrographis , COVID-19 , Diterpenos , Humanos , Cromatografía Liquida/métodos , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos , Diterpenos/química , Administración Oral , Redes y Vías Metabólicas , Cromatografía Líquida de Alta Presión/métodos , Andrographis/química
2.
Phytomedicine ; 112: 154708, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: covidwho-2232019

RESUMEN

BACKGROUND: Andrographis paniculata (Burm. f.) Nees has demonstrated potential for treating infections caused by coronaviruses. However, no antiviral activity of andrographolide or A. paniculata extracts against human coronavirus organ culture 43 (HCoV-OC43) has been reported. PURPOSE: This study aimed to evaluate the anti-HCoV-OC43 effect of andrographolide and A. paniculata as well as the correlation between andrographolide concentration and the anti-HCoV-OC43 activity of A. paniculata extracts. METHODS: This study evaluated and compared the in vitro anti-HCoV-OC43 activities of various A. paniculata extracts and andrographolide. To obtain A. paniculata extracts with different concentrations of andrographolide and its components, methanol and deep eutectic solvents (DES) were used to extract the aerial parts of A. paniculata. Andrographolide content was determined using UV-HPLC, and antiviral activity was assessed in HCT-8 colon cells. RESULTS: The methanol and five acidic DES (containing malic acid or citric acid) extracts of A. paniculata exerted anti-HCoV-OC43 activity. Antiviral activity had a moderately strong positive linear relationship (r = 0.7938) with andrographolide content. Although the methanol extract contained the highest andrographolide content (2.34 mg/ml), its anti-HCoV-OC43 activity was lower than that of the DES extracts containing lower andrographolide concentrations (0.92-1.46 mg/ml). CONCLUSION: Methanol and the five acidic DES extracts of A. paniculata exhibited anti-HCoV-OC43 activity. However, the in vitro antiviral activity of A. paniculata extracts did not have a very strong positive linear relationship (r < 0.8) with andrographolide concentration in the extract. As a result, when comparing A. paniculata extracts, the anti-HCoV-OC43 test could provide a different result from the andrographolide concentration determination.


Asunto(s)
Andrographis , Coronavirus , Diterpenos , Humanos , Extractos Vegetales/farmacología , Solventes , Andrographis paniculata , Disolventes Eutécticos Profundos , Metanol , Técnicas de Cultivo de Órganos , Diterpenos/farmacología
3.
Molecules ; 28(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: covidwho-2216644

RESUMEN

A number of phytochemicals have been identified as promising drug molecules against a variety of diseases using an in-silico approach. The current research uses this approach to identify the phyto-derived drugs from Andrographis paniculata (Burm. f.) Wall. ex Nees (AP) for the treatment of diphtheria. In the present study, 18 bioactive molecules from Andrographis paniculata (obtained from the PubChem database) were docked against the diphtheria toxin using the AutoDock vina tool. Visualization of the top four molecules with the best dockscore, namely bisandrographolide (-10.4), andrographiside (-9.5), isoandrographolide (-9.4), and neoandrographolide (-9.1), helps gain a better understanding of the molecular interactions. Further screening using molecular dynamics simulation studies led to the identification of bisandrographolide and andrographiside as hit compounds. Investigation of pharmacokinetic properties, mainly ADMET, along with Lipinski's rule and binding affinity considerations, narrowed down the search for a potent drug to bisandrographolide, which was the only molecule to be negative for AMES toxicity. Thus, further modification of this compound followed by in vitro and in vivo studies can be used to examine itseffectiveness against diphtheria.


Asunto(s)
Andrographis , Corynebacterium diphtheriae , Difteria , Diterpenos , Andrographis paniculata , Andrographis/química , Diterpenos/farmacología , Diterpenos/química , Extractos Vegetales/farmacología , Fitoquímicos/farmacología
4.
Gene ; 851: 146981, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: covidwho-2076125

RESUMEN

Andrographolide and related compounds are effective against several viral diseases, including dengue, COVID-19, influenza, and chikungunya. Andrographis paniculata is the primary source for these compounds, but its availability is limited. A. alata is a potential alternative source, and neoandrographolide (NAG) is the major antiviral compound in this species. Since molecular studies in A. alata are scarce, we sequenced its leaf transcriptome to identify the full-length genes involved in neoandrographolide biosynthesis. We assembled 13.6 Gb RNA-Seq data and generated 81,361 transcripts with 1007 bp average length and 1,810 bp N50. The transcripts were categorized under biological processes (2,707), cellular components (678), and molecular functions (2,036). KEGG analysis mapped 975 transcripts to the secondary metabolite pathways. Among the 420 transcripts mapped to terpenoids and polyketides pathways, 142 transcripts were related to the biosynthesis of andrographolide and its derivatives. After a detailed analysis of these transcripts, we identified 32 full-length genes coding for all the 22 enzymes needed for andrographolide biosynthesis. Among them, 15 full-length genes were identified for the first time from Andrographis species. These full-length genes and the transcripts shall serve as an invaluable resource for the metabolic engineering of andrographolides and neoandrographolide in Andrographis and other species.


Asunto(s)
Andrographis , COVID-19 , Diterpenos , Andrographis/genética , Andrographis/metabolismo , Antivirales/metabolismo , Diterpenos/metabolismo , Perfilación de la Expresión Génica
5.
Molecules ; 27(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: covidwho-2066270

RESUMEN

Andrographis paniculata is a well-known Asian medicinal plant with a major phytoconstituent of diterpene lactones, such as andrographolide, 14-deoxyandrographolide, and neoandrographolide. A World Health Organization (WHO) monograph on selected medicinal plants showed that A. paniculata extracts and its major diterpene lactones have promising anti-inflammatory, antidiabetic, antimalarial, anticancer, antifungal, antibacterial, antioxidant, and hypoglycemic activities. However, these active phytochemicals have poor water solubility and bioavailability when delivered in a conventional dosage form. These biological barriers can be mitigated if the extract or isolated compound are delivered as nanoparticles. This review discusses existing studies and marketed products of A. paniculata in solid, liquid, semi-solid, and gaseous dosage forms, either as an extract or isolated pure compounds, as well as their deficits in reaching maximum bioavailability. The pharmaceutics and pharmacological activity of A. paniculata as a nano-delivery system are also discussed.


Asunto(s)
Andrographis , Antimaláricos , Diterpenos , Plantas Medicinales , Andrographis/química , Andrographis paniculata , Antibacterianos , Antiinflamatorios/farmacología , Antifúngicos , Antioxidantes , Diterpenos/química , Hipoglucemiantes , Lactonas , Extractos Vegetales/química , Plantas Medicinales/química , Agua
6.
Molecules ; 27(14)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: covidwho-1938911

RESUMEN

The COVID-19 pandemic has intensively disrupted global health, economics, and well-being. Andrographis paniculata (Burm. f.) Nees has been used as a complementary treatment for COVID-19 in several Asian countries. This review aimed to summarize the information available regarding A. paniculata and its constituents, to provide critical points relating to its pharmacological properties, safety, and efficacy, revealing its potential to serve as a source of lead compounds for COVID-19 drug discovery. A. paniculata and its active compounds possess favorable antiviral, anti-inflammatory, immunomodulatory, and antipyretic activities that could be beneficial for COVID-19 treatment. Interestingly, recent in silico and in vitro studies have revealed that the active ingredients in A. paniculata showed promising activities against 3CLpro and its virus-specific target protein, human hACE2 protein; they also inhibit infectious virion production. Moreover, existing publications regarding randomized controlled trials demonstrated that the use of A. paniculata alone or in combination was superior to the placebo in reducing the severity of upper respiratory tract infection (URTI) manifestations, especially as part of early treatment, without serious side effects. Taken together, its chemical and biological properties, especially its antiviral activities against SARS-CoV-2, clinical trials on URTI, and the safety of A. paniculata, as discussed in this review, support the argument that A. paniculata is a promising natural source for drug discovery regarding COVID-19 post-infectious treatment, rather than prophylaxis.


Asunto(s)
Andrographis , Tratamiento Farmacológico de COVID-19 , Andrographis/química , Andrographis paniculata , Antivirales/farmacología , Antivirales/uso terapéutico , Descubrimiento de Drogas , Humanos , Plomo , Pandemias , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , SARS-CoV-2
7.
Phytother Res ; 35(10): 5365-5373, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: covidwho-1479284

RESUMEN

Andrographis paniculata is home to a rich variety of molecules especially andrographolide and its derivatives. Clinical properties of the andrographolide are multifarious and include: analgesic, antipyretic, antiretroviral, antiproliferative, antimalarial, antithrombotic, antihyperglycemic, antiurolethial, antilesihmaniasis, hepatoprotective, immune-modulatory, protective against alcohol induced toxicity and cardioproetcive activity and anticancer activity. Andrographolide, neoandrographolide, dehydroandrographolide and several natural and synthetic derivatives of it: 14-deoxy-11,12-didehydroandrographolide and 14-deoxyandrographolide, dehydroandrographolide succinic acid monoester (DAMS), 14-ά-lipoyl andrographolide (AL-1), 14-acetyl-3,9-isopropyl-ideneandrographolide, 14-acetylandrographolide, 3,14,19-triacetylandrographolide, and 3,9-isopropyl-idene andrographolide, are shown to possess significant antiviral activity against HIV, influenza A, HBV, HCV, HPP and HSV. Studies on SARS CoV 2 is restricted to in silico molecular docking studies on viral targets and selected host target proteins. The main targets of andrographolide and its derivatives are fusion and adsorption of virus to the host cell, binding to viral receptor and co-receptor, enzymes involved in DNA/RNA/Genome replication by the virus, translation, post-translation and reverse transcription. Andrographolide as a drug is yet to reach its full therapeutic potential since this molecule shows low bioavailability. Andrographolide therapy is in need of an appropriate delivery system that may increase its bioavailability. Further high-quality studies are needed to firmly establish the clinical efficacy of the plant.


Asunto(s)
Andrographis , Antivirales , Diterpenos , Extractos Vegetales/farmacología , Andrographis/química , Antivirales/farmacología , Diterpenos/farmacología , Simulación del Acoplamiento Molecular , SARS-CoV-2/efectos de los fármacos
8.
J Biomol Struct Dyn ; 39(12): 4415-4426, 2021 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1317839

RESUMEN

The outbreak due to SARS-CoV-2 (or Covid-19) is spreading alarmingly and number of deaths due to infection is aggressively increasing every day. Due to the rapid human to human transmission of Covid-19, we are in need to find a potent drug at the earliest by ruling-out the traditional time-consuming approach of drug development. This is only possible if we use reliable computational approaches for screening compounds from chemical space or by drug repurposing or by finding the phytochemicals and nutraceuticals from plants as they can be immediately used without the need for carrying out drug-trials to test safety and efficacy. A number of plant products were routinely suggested as drugs in traditional Indian and Chinese medicine. Here using molecular docking approach, and combined molecular dynamics and MM-GBSA based free energy calculations approach, we study the potency of the four selected phytochemicals namely andrographolide (AGP1), 14-deoxy 11,12-didehydro andrographolide (AGP2), neoandrographolide (AGP3) and 14-deoxy andrographolide (AGP4) from A. paniculata plant against the four key targets including three non-structural proteins (3 L main protease (3CLpro), Papain-like proteinase (PLpro) and RNA-directed RNA polymerase (RdRp)) and a structural protein (spike protein (S)) of the virus which are responsible for replication, transcription and host cell recognition. The therapeutic potential of the selected phytochemicals against Covid-19 were also evaluated in comparison with a few commercially available drugs. The binding free energy data suggest that AGP3 could be used as a cost-effective drug-analog for treating covid-19 infection in developing countries.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Andrographis , COVID-19 , Preparaciones Farmacéuticas , Antivirales/farmacología , Humanos , Simulación del Acoplamiento Molecular , Fitoquímicos/farmacología , SARS-CoV-2
9.
Front Immunol ; 12: 648250, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1305642

RESUMEN

BACKGROUND: The newly identified betacoronavirus SARS-CoV-2 is the causative pathogen of the coronavirus disease of 2019 (COVID-19) that killed more than 3.5 million people till now. The cytokine storm induced in severe COVID-19 patients causes hyper-inflammation, is the primary reason for respiratory and multi-organ failure and fatality. This work uses a rational computational strategy to identify the existing drug molecules to target host pathways to reduce the cytokine storm. RESULTS: We used a "host response signature network" consist of 36 genes induced by SARS-CoV-2 infection and associated with cytokine storm. In order to attenuate the cytokine storm, potential drug molecules were searched against "host response signature network". Our study identified that drug molecule andrographolide, naturally present in a medicinal plant Andrographis paniculata, has the potential to bind with crucial proteins to block the TNF-induced NFkB1 signaling pathway responsible for cytokine storm in COVID-19 patients. The molecular docking method showed the binding of andrographolide with TNF and covalent binding with NFkB1 proteins of the TNF signaling pathway. CONCLUSION: We used a rational computational approach to repurpose existing drugs targeting host immunomodulating pathways. Our study suggests that andrographolide could bind with TNF and NFkB1 proteins, block TNF-induced cytokine storm in COVID-19 patients, and warrant further experimental validation.


Asunto(s)
Antivirales/farmacología , COVID-19/inmunología , Síndrome de Liberación de Citoquinas/inmunología , Diterpenos/farmacología , Desarrollo de Medicamentos/métodos , SARS-CoV-2/fisiología , Andrographis/inmunología , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Humanos , Simulación del Acoplamiento Molecular , Subunidad p50 de NF-kappa B/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Tratamiento Farmacológico de COVID-19
10.
J Nat Prod ; 84(4): 1261-1270, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1180208

RESUMEN

The coronaviruses disease 2019 (COVID-19) caused by a novel coronavirus (SARS-CoV-2) has become a major health problem, affecting more than 50 million people with over one million deaths globally. Effective antivirals are still lacking. Here, we optimized a high-content imaging platform and the plaque assay for viral output study using the legitimate model of human lung epithelial cells, Calu-3, to determine the anti-SARS-CoV-2 activity of Andrographis paniculata extract and its major component, andrographolide. SARS-CoV-2 at 25TCID50 was able to reach the maximal infectivity of 95% in Calu-3 cells. Postinfection treatment of A. paniculata and andrographolide in SARS-CoV-2-infected Calu-3 cells significantly inhibited the production of infectious virions with an IC50 of 0.036 µg/mL and 0.034 µM, respectively, as determined by the plaque assay. The cytotoxicity profile developed over the cell line representatives of major organs, including liver (HepG2 and imHC), kidney (HK-2), intestine (Caco-2), lung (Calu-3), and brain (SH-SY5Y), showed a CC50 of >100 µg/mL for A. paniculata extract and 13.2-81.5 µM for andrographolide, respectively, corresponding to a selectivity index of over 380. In conclusion, this study provided experimental evidence in favor of A. paniculata and andrographolide for further development as a monotherapy or in combination with other effective drugs against SARS-CoV-2 infection.


Asunto(s)
Andrographis , Diterpenos/farmacología , Extractos Vegetales/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células Epiteliales/virología , Humanos , Hidroxicloroquina/farmacología , Pulmón/virología
11.
Phytochem Anal ; 32(4): 629-639, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-917100

RESUMEN

INTRODUCTION: Immunity boosting has emerged as a global strategy to fight the SARS-CoV-2 pandemic situation. In India, AYUSH systems of medicine have been promoted as an immune-protection strategy. Andrographis paniculata (Burm. F) Nees (AP) mentioned in Ayurveda has been widely used for treating sore throat, flu, and upper respiratory tract infections which may provide possible novel therapeutic approaches, exclusively targeting SARS-CoV-2 and its pathways. OBJECTIVES: The present work uses liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics and combination synergy analysis based on network pharmacology to mine multimode evidence to understand the possible mechanism of action, diseases association, protein-protein interaction and major pathways involved therein. MATERIAL AND METHODS: Metabolite profiling was performed by Agilent QTOF LC-MS/MS system. Network pharmacology analysis was performed by using functional annotation analysis based on databases like Binding DB, STRING, DAVID and KEGG for further data mining. Further combination synergy was evaluated using "neighbourhood approach" and networks were constructed through Cytoscape 3.2.1. RESULTS: The molecules from kalmegh provides immune-protection and anti-viral response via involving different pathways, like toll-like receptor pathway, PI3/AKT pathway and MAP kinase pathways against COVID-19 infection. The KEGG analysis showed that in a vast majority of the most enriched pathways, AP were associated with viral infections and upper respiratory tract infections. CONCLUSIONS: The results suggest a synergy between andrographolide and other molecules identified as safe and efficacious anti-inflammatory agent having effects on upper respiratory tract infections and can significantly decrease the production of cytokines and pro-inflammatory factors in viral infections.


Asunto(s)
Andrographis , COVID-19 , Diterpenos , Cromatografía Liquida , Humanos , India , Medicina Ayurvédica , Extractos Vegetales/farmacología , SARS-CoV-2 , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA